Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-488075

RESUMO

The Omicron BA.2 variant has become a dominant infective strain worldwide. Receptor binding studies reveal that the Omicron BA.2 spike trimer have 11-fold and 2-fold higher potency to human ACE2 than the spike trimer from the wildtype (WT) and Omicron BA.1 strains. The structure of the BA.2 spike trimer complexed with human ACE2 reveals that all three receptor-binding domains (RBDs) in the spike trimer are in open conformation, ready for ACE2 binding, thus providing a basis for the increased infectivity of the BA.2 strain. JMB2002, a therapeutic antibody that was shown to have efficient inhibition of Omicron BA.1, also shows potent neutralization activities against Omicron BA.2. In addition, both BA.1 and BA.2 spike trimers are able to bind to mouse ACE2 with high potency. In contrast, the WT spike trimer binds well to cat ACE2 but not to mouse ACE2. The structures of both BA.1 and BA.2 spike trimer bound to mouse ACE2 reveal the basis for their high affinity interactions. Together, these results suggest a possible evolution pathway for Omicron BA.1 and BA.2 variants from human-cat-mouse-human circle, which could have important implications in establishing an effective strategy in combating viral infection.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-474273

RESUMO

The Omicron variant of SARS-CoV-2 has rapidly become the dominant infective strain and the focus efforts against the ongoing COVID-19 pandemic. Here we report an extensive set of structures of the Omicron spike trimer by its own or in complex with ACE2 and an anti-Omicron antibody. These structures reveal that most Omicron mutations are located on the surface of the spike protein, which confer stronger ACE2 binding by nearly 10 folds but become inactive epitopes resistant to many therapeutic antibodies. Importantly, both RBD and the closed conformation of the Omicron spike trimer are thermodynamically unstable, with the melting temperature of the Omicron RBD decreased by as much as 7{degrees}C, making the spiker trimer prone to random open conformations. An unusual RBD-RBD interaction in the ACE2-spike complex unique to Omicron is observed to support the open conformation and ACE2 binding, serving the basis for the higher infectivity of Omicron. A broad-spectrum therapeutic antibody JMB2002, which has completed Phase 1 clinical trial, is found to interact with the same two RBDs to inhibit ACE2 binding, in a mode that is distinguished from all previous antibodies, thus providing the structural basis for the potent inhibition of Omicron by this antibody. Together with biochemical data, our structures provide crucial insights into higher infectivity, antibody evasion and inhibition of Omicron.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-363812

RESUMO

SARS-CoV-2 has caused a global pandemic of COVID-19 that urgently needs an effective treatment. Nucleoside analog drugs including favipiravir have been repurposed for COVID-19 despite of unclear mechanism of their inhibition of the viral RNA polymerase (RdRp). Here we report the cryo-EM structures of the viral RdRp in complex with favipiravir and two other nucleoside inhibitor drugs ribavirin and penciclovir. Ribavirin and the ribosylated form of favipiravir share a similar ribose scaffold that is distinct from penciclovir. However, the structures reveal that all three inhibitors are covalently linked to the primer strand in a monophosphate form despite the different chemical scaffolds between favipiravir and penciclovir. Surprisingly, the base moieties of these inhibitors can form mismatched pairs with the template strand. Moreover, in view of the clinical disadvantages of remdesivir mainly associated with its prodrug form, we designed several orally-available remdesivir parent nucleoside derivatives, including VV16 that showed 5-fold more potent than remdesivir in inhibition of viral replication. Together, these results demonstrate an unexpected promiscuity of the viral RNA polymerase and provide a basis for repurpose and design of nucleotide analog drugs for COVID-19. One Sentence SummaryCryo-EM structures of the RNA polymerase of SARS-CoV-2 reveals the basis for repurposing of old nucleotide drugs to treat COVID-19.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-328336

RESUMO

The COVID-19 pandemic by non-stop infections of SARS-CoV-2 has continued to ravage many countries worldwide. Here we report the discovery of suramin, a 100-year-old drug, as a potent inhibitor of the SARS-CoV-2 RNA dependent RNA polymerase (RdRp) through blocking the binding of RNA to the enzyme. In biochemical assays, suramin and its derivatives are at least 20-fold more potent than remdesivir, the currently approved nucleotide drug for COVID-19. The 2.6 [A] cryo-EM structure of the viral RdRp bound to suramin reveals two binding sites of suramin, with one site directly blocking the binding of the RNA template strand and the other site clash with the RNA primer strand near the RdRp catalytic active site, therefore inhibiting the viral RNA replication. Furthermore, suramin potently inhibits SARS-CoV-2 duplication in Vero E6 cells. These results provide a structural mechanism for the first non-nucleotide inhibitor of the SARS-CoV-2 RdRp and a rationale for repurposing suramin for treating COVID-19. One Sentence SummaryDiscovery and mechanism of suramin as potent SARS-CoV-2 RNA polymerase inhibitor and its repurposing for treating COVID-19.

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-138677

RESUMO

The pandemic of SARS-CoV-2 coronavirus disease-2019 (COVID-19) caused by SARS-COV-2 continues to ravage many countries in the world. Mpro is an indispensable protein for viral translation in SARS-CoV-2 and a potential target in high-specificity anti-SARS-CoV-2 drug screening. In this study, to explore potential drugs for treating COVID-19, we elucidated the structure of SARS-CoV-2 Mpro and explored the interaction between Mpro and GC376, an antiviral drug used to treat a range of coronaviruses in Feline via inhibiting Mpro. The availability and safety of GC376 were proved by biochemical and cell experiments in vitro. We determined the structure of an important protein, Mpro, in SARS-CoV-2, and revealed the interaction of GC376 with the viral substrate and inhibition of the catalytic site of SARS-CoV-2 Mpro.

6.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-032763

RESUMO

The pandemic of Corona Virus Disease 2019 (COVID-19) caused by SARS-CoV-2 has become a global crisis. The replication of SARS-CoV-2 requires the viral RNA-dependent RNA polymerase (RdRp), a direct target of the antiviral drug, Remdesivir. Here we report the structure of the SARS-CoV-2 RdRp either in the apo form or in complex with a 50-base template-primer RNA and Remdesivir at a resolution range of 2.5-2.8 [A]. The complex structure reveals that the partial double-stranded RNA template is inserted into the central channel of the RdRp where Remdesivir is incorporated into the first replicated base pair and terminates the chain elongation. Our structures provide critical insights into the working mechanism of viral RNA replication and a rational template for drug design to combat the viral infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...